Определение минора и алгебраического дополнения элемента определителя. Миноры и алгебраические дополнения

Определение. Если в определителе n-го порядка выбрать произвольно k строк и k столбцов, то элементы, стоящие на пересечении указанных строк и столбцов, образуют квадратную матрицу порядка k. Определитель такой квадратной матрицы называют минором k-го порядка .

Обозначается M k . Если k=1, то минор первого порядка - это элемент определителя.

Элементы, стоящие на пересечении оставшихся (n-k) строк и (n-k) столбцов, составляют квадратную матрицу порядка (n-k). Определитель такой матрицы называется минором, дополнительным к минору M k . Обозначается M n-k .

Алгебраическим дополнением минора M k будем называть его дополнительный минор, взятый со знаком “+” или “-” в зависимости от того, четна или нечетна сумма номеров всех строк и столбцов, в которых расположен минор M k .

Если k=1, то алгебраическое дополнение к элементу a ik вычисляется по формуле

A ik =(-1) i+k M ik , где M ik - минор (n-1) порядка.

Теорема . Произведение минора k-го порядка на его алгебраическое дополнение равно сумме некоторого числа членов определителя D n .

Доказательство

1. Рассмотрим частный случай. Пусть минор M k занимает левый верхний угол определителя, то есть располагается в строках с номерами 1, 2, ..., k, тогда минор M n-k будет занимать строки k+1, k+2, ..., n.

Вычислим алгебраическое дополнение к минору M k . По определению,

A n-k =(-1) s M n-k , где s=(1+2+...+k) +(1+2+...+k)= 2(1+2+...+k), тогда

(-1) s =1 и A n-k = M n-k . Получим

M k A n-k = M k M n-k . (*)

Берем произвольный член минора M k

где s - число инверсий в подстановке

и произвольный член минора M n-k

где s * - число инверсий в подстановке

Перемножая (1) и (3), получим

Произведение состоит из n элементов, расположенных в различных строках и столбцах определителя D. Следовательно, это произведение является членом определителя D. Знак произведения (5) определяется суммой инверсий в подстановках (2) и (4), а знак аналогичного произведения в определителе D определяется числом инверсий s k в подстановке

Очевидно, что s k =s+s * .

Таким образом, возвращаясь к равенству (*), получим, что произведение M k A n-k состоит только из членов определителя.

2. Пусть минор M k расположен в строках с номерами i 1 , i 2 , ..., i k и в столбцах с номерами j 1 , j 2 , ..., j k , причем i 1 < i 2 < ...< i k и j 1 < j 2 < ...< j k .

Используя свойства определителей, с помощью транспозиций сместим минор в левый верхний угол. Получим определитель D ¢ , в котором минор M k занимает левый верхний угол, а дополнительный к нему минор M¢ n-k - правый нижний угол, тогда, по доказанному в пункте 1, получим, что произведение M k n-k является суммой некоторого количества элементов определителя D ¢ , взятых со своим знаком. Но D ¢ получен из D с помощью (i 1 -1)+(i 2 -2)+ ...+(i k -k)=(i 1 + i 2 + ...+ i k)-(1+2+...+k) транспозиций строк и (j 1 -1)+(j 2 -2)+ ...+(j k -k)=(j 1 + j 2 + ...+ j k)- (1+2+...+k) транспозиций столбцов. То есть всего было выполнено


(i 1 + i 2 + ...+ i k)-(1+2+...+k)+ (j 1 + j 2 + ...+ j k)- (1+2+...+k)= (i 1 + i 2 + ...+ i k)+ (j 1 + j 2 + ...+ j k)- 2(1+2+...+k)=s-2(1+2+...+k). Поэтому члены определителей D и D ¢ отличаются знаком (-1) s-2(1+2+...+k) =(-1) s , следовательно, произведение (-1) s M k n-k будет состоять из некоторого количества членов определителя D, взятых с теми же знаками, какие они имеют в этом определителе.

Теорема Лапласа . Если в определителе n-го порядка выбрать произвольно k строк (или k столбцов) 1£k£n-1, тогда сумма произведений всех миноров k-го порядка, содержащихся в выбранных строках, на их алгебраические дополнения равна определителю D.

Доказательство

Выберем произвольно строки i 1 , i 2 , ..., i k и докажем, что

Ранее было доказано, что все элементы в левой части равенства содержатся в качестве слагаемых в определителе D. Покажем, что каждый член определителя D попадает только в одно из слагаемых . Действительно, всякое t s имеет вид t s = . если в этом произведении отметить сомножители, у которых первые индексы i 1 , i 2 , ..., i k , и составить их произведение , то можно заметить, что полученное произведение принадлежит минору k-го порядка. Следовательно, оставшиеся члены, взятые из оставшихся n-k строк и n-k столбцов, образуют элемент, принадлежащий дополнительному минору, а с учетом знака - алгебраическому дополнению, следовательно, любое t s попадает только в одно из произведений , что доказывает теорему.

Следствие (теорема о разложении определителя по строке). Сумма произведений элементов некоторой строки определителя на соответствующие алгебраические дополнения равна определителю.

(Доказательство в качестве упражнения.)

Теорема . Сумма произведений элементов i-ой строки определителя на соответствующие алгебраические дополнения к элементам j-ой строки (i¹j) равна 0.

Замечание . Удобно применять следствие из теоремы Лапласа к определителю, преобразованному с помощью свойств таким образом, что в одной из строк (или в одном из столбцов) все элементы, кроме одного, равны 0.

Пример. Вычислить определитель

12 -14 +35 -147 -20 -2= -160.

В данной теме рассмотрим понятия алгебраического дополнения и минора. Изложение материала опирается на термины, пояснённые в теме "Матрицы. Виды матриц. Основные термины" . Также нам понадобятся некоторые формулы для вычисления определителей . Так как в данной теме немало терминов, относящихся к минорам и алгебраическим дополнениям, то я добавлю краткое содержание, чтобы ориентироваться в материале было проще.

Минор $M_{ij}$ элемента $a_{ij}$

$M_{ij}$ элемента $a_{ij}$ матрицы $A_{n\times n}$ именуют определитель матрицы, полученной из матрицы $A$ вычёркиванием i-й строки и j-го столбца (т.е. строки и столбца, на пересечении которых находится элемент $a_{ij}$).

Для примера рассмотрим квадратную матрицу четвёртого порядка: $A=\left(\begin{array} {cccc} 1 & 0 & -3 & 9\\ 2 & -7 & 11 & 5 \\ -9 & 4 & 25 & 84\\ 3 & 12 & -5 & 58 \end{array} \right)$. Найдём минор элемента $a_{32}$, т.е. найдём $M_{32}$. Сперва запишем минор $M_{32}$, а потом вычислим его значение. Для того, чтобы составить $M_{32}$, вычеркнем из матрицы $A$ третью строку и второй столбец (именно на пересечении третьей строки и второго столбца расположен элемент $a_{32}$). Мы получим новую матрицу, определитель которой и есть искомый минор $M_{32}$:

Этот минор несложно вычислить, используя формулу №2 из темы вычисления :

$$ M_{32}=\left| \begin{array} {ccc} 1 & -3 & 9\\ 2 & 11 & 5 \\ 3 & -5 & 58 \end{array} \right|= 1\cdot 11\cdot 58+(-3)\cdot 5\cdot 3+2\cdot (-5)\cdot 9-9\cdot 11\cdot 3-(-3)\cdot 2\cdot 58-5\cdot (-5)\cdot 1=579. $$

Итак, минор элемента $a_{32}$ равен 579, т.е. $M_{32}=579$.

Часто вместо словосочетания "минор элемента матрицы" в литературе встречается "минор элемента определителя". Суть остается неизменной: чтобы получить минор элемента $a_{ij}$ нужно вычеркнуть из исходного определителя i-ю строку и j-й столбец. Оставшиеся элементы записывают в новый определитель, который и является минором элемента $a_{ij}$. Например, найдём минор элемента $a_{12}$ определителя $\left| \begin{array} {ccc} -1 & 3 & 2\\ 9 & 0 & -5 \\ 4 & -3 & 7 \end{array} \right|$. Чтобы записать требуемый минор $M_{12}$ нам понадобится вычеркнуть из заданного определителя первую строку и второй столбец:

Чтобы найти значение данного минора используем формулу №1 из темы вычисления определителей второго и третьего порядков :

$$ M_{12}=\left| \begin{array} {cc} 9 & -5\\ 4 & 7 \end{array} \right|=9\cdot 7-(-5)\cdot 4=83. $$

Итак, минор элемента $a_{12}$ равен 83, т.е. $M_{12}=83$.

Алгебраическое дополнение $A_{ij}$ элемента $a_{ij}$

Пусть задана квадратная матрица $A_{n\times n}$ (т.е. квадратная матрица n-го порядка).

Алгебраическое дополнением $A_{ij}$ элемента $a_{ij}$ матрицы $A_{n\times n}$ находится по следующей формуле: $$ A_{ij}=(-1)^{i+j}\cdot M_{ij}, $$

где $M_{ij}$ - минор элемента $a_{ij}$.

Найдем алгебраическое дополнение элемента $a_{32}$ матрицы $A=\left(\begin{array} {cccc} 1 & 0 & -3 & 9\\ 2 & -7 & 11 & 5 \\ -9 & 4 & 25 & 84\\ 3 & 12 & -5 & 58 \end{array} \right)$, т.е. найдём $A_{32}$. Ранее мы уже находили минор $M_{32}=579$, поэтому используем полученный результат:

Обычно при нахождении алгебраических дополнений не вычисляют отдельно минор, а уж потом само дополнение. Запись минора опускают. Например, найдем $A_{12}$, если $A=\left(\begin{array} {ccc} -5 & 10 & 2\\ 6 & 9 & -4 \\ 4 & -3 & 1 \end{array} \right)$. Согласно формуле $A_{12}=(-1)^{1+2}\cdot M_{12}=-M_{12}$. Однако чтобы получить $M_{12}$ достаточно вычеркнуть первую строку и второй столбец матрицы $A$, так зачем же вводить лишнее обозначение для минора? Сразу запишем выражение для алгебраического дополнения $A_{12}$:

Минор k-го порядка матрицы $A_{m\times n}$

Если в предыдущих двух пунктах мы говорили лишь о квадратных матрицах, то здесь поведём речь также и о прямоугольных матрицах, у которых количество строк вовсе не обязательно равняется количеству столбцов. Итак, пусть задана матрица $A_{m\times n}$, т.е. матрица, содержащая m строк и n столбцов.

Минором k-го порядка матрицы $A_{m\times n}$ называется определитель, элементы которого расположены на пересечении k строк и k столбцов матрицы $A$ (при этом предполагается, что $k≤ m$ и $k≤ n$).

Например, рассмотрим такую матрицу:

$$A=\left(\begin{array} {cccc} -1 & 0 & -3 & 9\\ 2 & 7 & 14 & 6 \\ 15 & -27 & 18 & 31\\ 0 & 1 & 19 & 8\\ 0 & -12 & 20 & 14\\ 5 & 3 & -21 & 9\\ 23 & -10 & -5 & 58 \end{array} \right) $$

Запишем для неё какой-либо минор третьего порядка. Чтобы записать минор третьего порядка нам потребуется выбрать какие-либо три строки и три столбца данной матрицы. Например, возьмём строки №2, №4, №6 и столбцы №1, №2, №4. На пересечении этих строк и столбцов будут располагаться элементы требуемого минора. На рисунке элементы минора показаны синим цветом:

$$ \left(\begin{array} {cccc} -1 & 0 & -3 & 9 \\ \boldblue{2} & \boldblue{7} & 14 & \boldblue{6} \\ 15 & -27 & 18 & 31\\ \boldblue{0} & \boldblue{1} & 19 & \boldblue{8}\\ 0 & -12 & 20 & 14\\ \boldblue{5} & \boldblue{3} & -21 & \boldblue{9}\\ 23 & -10 & -5 & 58 \end{array} \right);\; M=\left|\begin{array} {ccc} 2 & 7 & 6 \\ 0 & 1 & 8 \\ 5 & 3 & 9 \end{array} \right|. $$

Миноры первого порядка находятся на пересечении одной строки и одного столбца, т.е. миноры первого порядка равны элементам заданной матрицы.

Минор k-го порядка матрицы $A_{m\times n}=(a_{ij})$ называется главным , если на главной диагонали данного минора находятся только главные диагональные элементы матрицы $A$.

Напомню, что главными диагональными элементами именуют те элементы матрицы, у которых индексы равны: $a_{11}$, $a_{22}$, $a_{33}$ и так далее. Например, для рассмотренной выше матрицы $A$ такими элементами будут $a_{11}=-1$, $a_{22}=7$, $a_{33}=18$, $a_{44}=8$. На рисунке они выделены зелёным цветом:

$$\left(\begin{array} {cccc} \boldgreen{-1} & 0 & -3 & 9\\ 2 & \boldgreen{7} & 14 & 6 \\ 15 & -27 & \boldgreen{18} & 31\\ 0 & 1 & 19 & \boldgreen{8}\\ 0 & -12 & 20 & 14\\ 5 & 3 & -21 & 9\\ 23 & -10 & -5 & 58 \end{array} \right) $$

Например, если в матрице $A$ мы вычеркнем строки и столбцы с номерами 1 и 3, то на их пересечении будут расположены элементы минора второго порядка, на главной диагонали которого будут находиться только диагональные элементы матрицы $A$ (элементы $a_{11}=-1$ и $a_{33}=18$ матрицы $A$). Следовательно, мы получим главный минор второго порядка:

$$ M=\left|\begin{array} {cc} \boldgreen{-1} & -3 \\ 15 & \boldgreen{18} \end{array} \right| $$

Естественно, что мы могли взять иные строки и столбцы, - например, с номерами 2 и 4, получив при этом иной главный минор второго порядка.

Пусть некий минор $M$ k-го порядка матрицы $A_{m\times n}$ не равен нулю, т.е. $M\neq 0$. При этом все миноры, порядок которых выше k, равны нулю. Тогда минор $M$ называют базисным , а строки и столбцы, на которых расположены элементы базисного минора, именуют базисными строками и базисными столбцами .

Для примера рассмотрим такую матрицу:

$$A=\left(\begin{array} {ccc} -1 & 0 & 3 & 0 & 0 \\ 2 & 0 & 4 & 1 & 0\\ 1 & 0 & -2 & -1 & 0\\ 0 & 0 & 0 & 0 & 0 \end{array} \right) $$

Запишем минор этой матрицы, элементы которого расположены на пересечении строк №1, №2, №3 и столбцов с №1, №3, №4. Мы получим минор третьего порядка (его элементы выделены в матрице $A$ фиолетовым цветом):

$$ \left(\begin{array} {ccc} \boldpurple{-1} & 0 & \boldpurple{3} & \boldpurple{0} & 0 \\ \boldpurple{2} & 0 & \boldpurple{4} & \boldpurple{1} & 0\\ \boldpurple{1} & 0 & \boldpurple{-2} & \boldpurple{-1} & 0\\ 0 & 0 & 0 & 0 & 0 \end{array} \right);\; M=\left|\begin{array} {ccc} -1 & 3 & 0 \\ 2 & 4 & 1 \\ 1 & -2 & -1 \end{array} \right|. $$

Найдём значение этого минора, используя формулу №2 из темы вычисления определителей второго и третьего порядков :

$$ M=\left| \begin{array} {ccc} -1 & 3 & 0\\ 2 & 4 & 1 \\ 1 & -2 & -1 \end{array} \right|=4+3+6-2=11. $$

Итак, $M=11\neq 0$. Теперь попробуем составить любой минор, порядок которого выше трёх. Чтобы составить минор четвёртого порядка, нам придётся использовать четвёртую строку, однако все элементы этой строки равны нулю. Следовательно, в любом миноре четвёртого порядка будет нулевая строка, а это означает, что все миноры четвёртого порядка равны нулю. Миноры пятого и более высоких порядков составить мы не можем, так как матрица $A$ имеет всего 4 строки.

Мы нашли минор третьего порядка, не равный нулю. При этом все миноры высших порядков равны нулю, следовательно, рассмотренный нами минор - базисный. Строки матрицы $A$, на которых расположены элементы этого минора (первая, вторая и третья), - базисные строки, а первый, третий и четвёртый столбцы матрицы $A$ - базисные столбцы.

Данный пример, конечно, тривиальный, так как его цель - наглядно показать суть базисного минора. Вообще, базисных миноров может быть несколько, и обычно процесс поиска такого минора куда сложнее и объёмнее.

Введём ещё одно понятие - окаймляющий минор.

Пусть некий минор k-го порядка $M$ матрицы $A_{m\times n}$ расположен на пересечении k строк и k столбцов. Добавим к набору этих строк и столбцов ещё одну строку и столбец. Полученный минор (k+1)-го порядка именуют окаймляющим минором для минора $M$.

Для примера обратимся к такой матрице:

$$A=\left(\begin{array} {ccccc} -1 & 2 & 0 & -2 & -14\\ 3 & -17 & -3 & 19 & 29\\ 5 & -6 & 8 & -9 & 41\\ -5 & 11 & 19 & -20 & -98\\ 6 & 12 & 20 & 21 & 54\\ -7 & 10 & 14 & -36 & 79 \end{array} \right) $$

Запишем минор второго порядка, элементы которого расположены на пересечении строк №2 и №5, а также столбцов №2 и №4. Эти элементы выделены в матрице красным цветом:

$$ \left(\begin{array} {ccccc} -1 & 2 & 0 & -2 & -14\\ 3 & \boldred{-17} & -3 & \boldred{19} & 29\\ 5 & -6 & 8 & -9 & 41\\ -5 & 11 & 19 & -20 & -98\\ 6 & \boldred{12} & 20 & \boldred{21} & 54\\ -7 & 10 & 14 & -36 & 79 \end{array} \right);\; M=\left|\begin{array} {ccc} -17 & 19 \\ 12 & 21 \end{array} \right|. $$

Добавим к набору строк, на которых лежат элементы минора $M$, ещё строку №1, а к набору столбцов - столбец №5. Получим новый минор $M"$ (уже третьего порядка), элементы которого расположены на пересечении строк №1, №2, №5 и столбцов №2, №4, №5. Элементы минора $M$ на рисунке выделены красным цветом, а элементы, которые мы добавляем к минору $M$ - синим:

$$ \left(\begin{array} {ccccc} -1 & \boldblue{2} & 0 & \boldblue{-2} & \boldblue{-14}\\ 3 & \boldred{-17} & -3 & \boldred{19} & \boldblue{29}\\ 5 & -6 & 8 & -9 & 41\\ -5 & 11 & 19 & -20 & -98\\ 6 & \boldred{12} & 20 & \boldred{21} & \boldblue{54}\\ -7 & 10 & 14 & -36 & 79 \end{array} \right);\; M"=\left|\begin{array} {ccc} 2 & -2 & -14 \\ -17 & 19 & 29 \\ 12 & 21 & 54 \end{array} \right|. $$

Минор $M"$ является окаймляющим минором для минора $M$. Аналогично, добавляя к набору строк, на которых лежат элементы минора $M$, строку №4, а к набору столбцов - столбец №3, получим минор $M""$ (минор третьего порядка):

$$ \left(\begin{array} {ccccc} -1 & 2 & 0 & -2 & -14\\ 3 & \boldred{-17} & \boldblue{-3} & \boldred{19} & 29\\ 5 & -6 & 8 & -9 & 41\\ -5 & \boldblue{11} & \boldblue{19} & \boldblue{-20} & -98\\ 6 & \boldred{12} & \boldblue{20} & \boldred{21} & 54\\ -7 & 10 & 14 & -36 & 79 \end{array} \right);\; M""=\left|\begin{array} {ccc} -17 & -3 & 19 \\ 11 & 19 & -20 \\ 12 & 20 & 21 \end{array} \right|. $$

Минор $M""$ также является окаймляющим минором для минора $M$.

Минор k-го порядка матрицы $A_{n\times n}$. Дополнительный минор. Алгебраическое дополнение к минору квадратной матрицы.

Вновь вернёмся к квадратным матрицам. Введём понятие дополнительного минора.

Пусть задан некий минор $M$ k-го порядка матрицы $A_{n\times n}$. Определитель (n-k)-го порядка, элементы которого получены из матрицы $A$ после вычеркивания строк и столбцов, содержащих минор $M$, называется минором, дополнительным к минору $M$.

Для примера рассмотрим квадратную матрицу пятого порядка:

$$ A=\left(\begin{array}{ccccc} -1 & 2 & 0 & -2 & -14\\ 3 & -17 & -3 & 19 & 29\\ 5 & -6 & 8 & -9 & 41\\ -5 & 11 & 16 & -20 & -98\\ -7 & 10 & 14 & -36 & 79 \end{array} \right) $$

Выберем в ней строки №1 и №3, а также столбцы №2 и №5. На пересечении оных строк и столбцов будут элементы минора $M$ второго порядка. Эти элементы выделены в матрице $A$ зелёным цветом:

$$ \left(\begin{array}{ccccc} -1 & \boldgreen{2} & 0 & -2 & \boldgreen{-14}\\ 3 & -17 & -3 & 19 & 29\\ 5 & \boldgreen{-6} & 8 & -9 & \boldgreen{41}\\ -5 & 11 & 16 & -20 & -98\\ -7 & 10 & 14 & -36 & 79 \end{array} \right);\; M=\left|\begin{array}{cc} 2 & -14 \\ -6 & 41 \end{array} \right|. $$

Теперь уберём из матрицы $A$ строки №1 и №3 и столбцы №2 и №5, на пересечении которых находятся элементы минора $M$ (элементы убираемых строк и столбцов показаны красным цветом на рисунке ниже). Оставшиеся элементы образуют минор $M"$:

$$ \left(\begin{array}{ccccc} \boldred{-1} & \boldred{2} & \boldred{0} & \boldred{-2} & \boldred{-14}\\ 3 & \boldred{-17} & -3 & 19 & \boldred{29}\\ \boldred{5} & \boldred{-6} & \boldred{8} & \boldred{-9} & \boldred{41}\\ -5 & \boldred{11} & 16 & -20 & \boldred{-98}\\ -7 & \boldred{10} & 14 & -36 & \boldred{79} \end{array} \right);\; M"=\left|\begin{array} {ccc} 3 & -3 & 19 \\ -5 & 16 & -20 \\ -7 & 14 & -36 \end{array}\right|. $$

Минор $M"$, порядок которого равен $5-2=3$, является минором, дополнительным к минору $M$.

Алгебраическим дополнением к минору $M$ квадратной матрицы $A_{n\times n}$ называется выражение $(-1)^{\alpha}\cdot M"$, где $\alpha$ - сумма номеров строк и столбцов матрицы $A$, на которых расположены элементы минора $M$, а $M"$ - минор, дополнительный к минору $M$.

Словосочетание "алгебраическое дополнение к минору $M$" часто заменяют словосочетанием "алгебраическое дополнение минора $M$".

Для примера рассмотрим матрицу $A$, для которой мы находили минор второго порядка $ M=\left| \begin{array} {ccc} 2 & -14 \\ -6 & 41 \end{array} \right| $ и дополнительный к нему минор третьего порядка: $M"=\left| \begin{array} {ccc} 3 & -3 & 19\\ -5 & 16 & -20 \\ -7 & 14 & -36 \end{array} \right|$. Обозначим алгебраическое дополнение минора $M$ как $M^*$. Тогда согласно определению:

$$ M^*=(-1)^\alpha\cdot M". $$

Параметр $\alpha$ равен сумме номеров строк и столбцов, на которых находится минор $M$. Этот минор расположен на пересечении строк №1, №3 и столбцов №2, №5. Следовательно, $\alpha=1+3+2+5=11$. Итак:

$$ M^*=(-1)^{11}\cdot M"=-\left| \begin{array} {ccc} 3 & -3 & 19\\ -5 & 16 & -20 \\ -7 & 14 & -36 \end{array} \right|. $$

В принципе, используя формулу №2 из темы вычисления определителей второго и третьего порядков , можно довести вычисления до конца, получив значение $M^*$:

$$ M^*=-\left| \begin{array} {ccc} 3 & -3 & 19\\ -5 & 16 & -20 \\ -7 & 14 & -36 \end{array} \right|=-30. $$


Миноры матрицы

Пусть дана квадратная матрица А, n — ого порядка. Минором некоторого элемента аij , определителя матрицы n — ого порядка называется определитель (n — 1) — ого порядка, полученный из исходного путем вычеркивания строки и столбца, на пересечении которых находится выбранный элемент аij. Обозначается Мij.

Рассмотрим на примере определителя матрицы 3 — его порядка:
Миноры и алгебраические дополнения, определитель матрицы 3 — его порядка , тогда согласно определению минора, минором М12, соответствующим элементу а12, будет определитель : При этом, с помощью миноров можно облегчать задачу вычисления определителя матрицы . Надо разложить определитель матрицы по некоторой строке и тогда определитель будет равен сумме всех элементов этой строки на их миноры. Разложение определителя матрицы 3 — его порядка будет выглядеть так:


, знак перед произведением равен (-1) n , где n = i + j.

Алгебраические дополнения:

Алгебраическим дополнением элемента аij называется его минор , взятый со знаком «+», если сумма (i + j) четное число, и со знаком «-«, если эта сумма нечетное число. Обозначается Аij.
Аij = (-1)i+j × Мij.

Тогда можно переформулировать изложенное выше свойство. Определитель матрицы равен сумме произведение элементов некоторого ряда (строки или столбца) матрицы на соответствующие им алгебраические дополнения . Пример.

    Алгебраическое дополнение - понятие матричной алгебры; применительно к элементу aij квадратной матрицы А образуется путем умножения минора элемента aij на (1)i+j; обозначается Аij: Aij=(1)i+jMij, где Mij минор элемента aij матрицы A=, т.е. определитель… … Экономико-математический словарь

    алгебраическое дополнение - Понятие матричной алгебры; применительно к элементу aij квадратной матрицы А образуется путем умножения минора элемента aij на (1)i+j; обозначается Аij: Aij=(1)i+jMij, где Mij минор элемента aij матрицы A=, т.е. определитель матрицы,… … Справочник технического переводчика

    См. в ст. Определитель … Большая советская энциклопедия

    Для минора М число, равное где М минор порядка k, расположенный в строках с номерами и столбцах с номерами некоторой квадратной матрицы Апорядка п; определитель матрицы порядка n k, полученной из матрицы Авычеркиванием строк и столбцов минора М;… … Математическая энциклопедия

    В Викисловаре есть статья «дополнение» Дополнение может означать … Википедия

    Операция, к рая ставит в соответствие подмножеству Мданного множества Xдругое подмножество так, что если известны Ми N, то тем или иным способом может быть восстановлено множество X. В зависимости от того, какой структурой наделено множество X,… … Математическая энциклопедия

    Или детерминант, в математике запись чисел в виде квадратной таблицы, в соответствие которой ставится другое число (значение определителя). Очень часто под понятием определитель имеют в виду как значение определителя, так и форму его записи.… … Энциклопедия Кольера

    О теореме из теории вероятностей см. статью Локальная теорема Муавра Лапласа. Теорема Лапласа одна из теорем линейной алгебры. Названа в честь французского математика Пьера Симона Лапласа (1749 1827), которому приписывают формулирование… … Википедия

    - (Laplacian matrix) одно из представлений графа с помощью матрицы. Матрица Кирхгофа используется для подсчета остовных деревьев данного графа (матричная теорема о деревьях), а также используется в спектральной теории графов. Содержание 1… … Википедия

    Уравнением называется математическое соотношение, выражающее равенство двух алгебраических выражений. Если равенство справедливо для любых допустимых значений входящих в него неизвестных, то оно называется тождеством; например, соотношение вида… … Энциклопедия Кольера

Книги

  • Дискретная математика , А. В. Чашкин. 352 стр. Учебник состоит из 17 глав по основным разделам дискретной математики: комбинаторному анализу, теории графов, булевым функциям, сложности вычисления и теории кодирования. Содержит…